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During the past three years, input force limiting has been utilized in ten
JPL vibration tests (Refs.  1 & 2) to prevent overtesting of flight hardware.
In force limited vibration tests, the shaker force is limited to the
predicted maximum flight force, plus a specified margin. Force limiting
provides a rational and economical solution to the overtesting problem
associated with hard mounting of the test item. The two conventional
approaches 10 the overtesting prc)blem are either to develop “bullet proof”
hardware, which is very expensive, or to limit the responses of the test
item to predicted flight levels, Input force limiting is in theory equivalent
to response limiting, but force limiting is often more convenient (critical
response loci~tions  are sometimes numerc)us  and not accessible) and less
dependent on the details of payloac{ models. Implementation of force
limiting requires: derivation of a force specification (analogous to that
for acceleration), a vibration test fixture to accommodate force sensors,
and shaker c~peration with dual cc)ntrol  of both acceleration and force.

This paper focuses on the derivation of force specificatic)ns.  There are
essentially no flight data, and little system test data, on the forces at
mounting structure and payload interfaces. Force specifications are
therefore derived using structural impedance data on mounting structures
and payloads from tap tests and shaker tests with force gages, as well as
from finite ellement analyses. In previous JPL applications of force
limiting, the force specifications have been derived using one of two
methods (Ref. 3): blocked force or two-ciegree-of-f  reedorn system (TDFS)
mean-square response. These methods were adequate for previous testing
applications, because a conservative approach was adopted, but the
methods involve some inherent conceptual difficulties and do not
adequately represent the contribution of resonant and nonresonant
vibration modes to the interface force.
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DEVELOPMENT OF FREQUENCY SHIF”T  METHO[) OF PREDICTING FORCE LIMITS

An improved method of deriving force specifications for force limited
vibration tests is described. The derivatic]n  is one dimensional, that is
only one component of the six component force/moment vector and only
one point at the source/load interface is considered. Empirical and
analytical methods of defining the required effective mass data are not
discussed. Much of the rationale for the method was provided by Ref. 4.

For both the coupled source and load configuration of flight and the
isolated load configuration of the vibration test, the interface force
autospectrum  Sff is related to the interface acceleration autospectrum
by Eq. 1, which is F=MA for random vibration:

Sff(w) = IMp(w)lp S..(w) (1)

saa

where: Mp is the load dynamic mass, i.e. the magnitude and phase of the
frequency response functions (F: RF) of the ratio of the drive point force to
acceleration, which is the same for both configurations, The term
“dynamic” mass is used to include the complete dynamic response
including resonance and stiffness effects,

The application of Eq. 1 to a simple coupled source and load system is
illustrated in lFig. 1. The FRF curves in Fig. 1 are derived in Ref. 5 for the
simple TDFS shown in the upper right hand of Fig. 2 for the case of
identical oscillators and unit excitation, F“ig, la shows the magnitude of
the load dynamic mass, which peaks at the load natural frequency fO with
an amplitude Q times the input, (The amplification factor Q is the
reciprocal of twice the critical damping ratio.) Fig. 1 b and c show the
magnitude of the coupled system interface acceleration and force,
respectively. Eq. 1 may be used to calculate the force in Fig. 1 c from the
load dynamic mass in Fig. 1 a and the acceleration in Fig. 1 b. For example,
applying Eq. 1 at the 0.62 }-fz coupled system resonance frequency in Fig. 1,
the load mass of approximately 1.6 times the peak acceleration of 50
equals the peak force of 80, and at 1.62 Hz the load mass clf approximately
0.6 times the peak acceleration of 8 equals the peak force of 5. Notice
from Fig. 1 that the interface force and acceleration peak at the same
frequencies, i.e. the coupled system natural frequencies. This is shown to
be a general result.
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As a first example of the improved method, the maxirnurn force for the
simple l-DFS with different masses shown in Fig. 2 is calculated. For this
TDFS, the maximum response anti maximum force are for the case where
the oscillator frequencies are identical, i.e. the dynamic absorber (Ref. 6).
The characteristic equation for a dynamic absorber (Ref. 7) is used to
calculate the coupled system resonance frequencies for the TDFS in Fig. 2:

f3 p =  (1-tu/2) ~. (u-}up/4)  05 (2)

where: t3 is the ratio of a coupled system resonance frec~uency  to the
uncoupled resonance frequency of the load oscillator and u is the ratio of
load to source masses M2/M1. The peak in the interface force spectrum
normalized by the peak in the acceleration spectrum at each of the two
resonance frequencies is calculated from the magnitude squared of the
load dynamic mass via Eq. 1, which for the TDFS in Fig.2 is:

Sff/(S~~ M2P) = (l+ WQz)/[(l- 8p) p + 132./Qz]. (3)

which is plotted in Fig. 2 against the ratio u of the load mass M2 to the
source mass Ml. (The greater of the values of Eq. 3 at B+ and 8. is used. )
For small values of the mass ratio, the load has little effect on the source
and the maximum normalized force asymptote is Qp. (Previous force limits
based on the mean-square response of a simple TDFS have an asympote of
Qz/2, Ref. 3). For large values of the mass ratio, the maximum normalized
force approaches unity, i.e. there is no amplification regardless of the Q.

The improveci method is called the “frequency shift” method because the
maximum forces in the coupled system are calculated by evaluating the
load dynamic mass at the coupled system, or shifted, resonance
frequencies instead of at its peak which is at the uncoupled load
resonance frequency (Fig. 1a). The ratio of the coupled system maximum
force to the force in a conventional vibration test, the so called ‘(knock
down” factor, is equal to the ratio of the load dynamic mass at the shifted
frequencies to its peak value at the uncoupled load resonance frequency.

CALCULATION OF: FORCE LIMITS FOR RESIDUAL AND MODAI- MASS MODEL

To generate ia set of parametric curves which may be used to specify force
limits for vibration tests, the frequency shift method is applied to a more
complex TDFS in which the source and load each have two masses to
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represent both the residual and modal masses of a continuous system.
Figure 3a shc)ws a model of a source and load in which each mode may be
represented ,as an oscillator attached to the connection interface.
Derivation of this type of model from a FEM analysis requires normalizing
the modes so that the inertial forces equal the reaction forces at the
interface, Ref. 8. When this model is excited at the interface with a
frequency neiar the resonance frequency wn of the rlh mode, the model may
be simplified to that in Fig. 3b, where mn is the modal mass of the nth
mode and Mrl is the residual mass, i.e. the sum of the masses of the nth and
all higher resonance frequency modes. Finally, Fig. 3C shows the coupled
system model which results from coupling a residual and modal mass
model of both the source and load,

The maximum normalized force for the residual and modal mass TDFS in
Fig. 3C is calculated similarly to that for the simple TDFS in F:ig. 2, i.e. by
evaluating the Ioacj dynamic mass, [it the coupled system resonance
frequencies. It is assumed that the acceleration specification correctly
envelopes the higher of the two acceleration peaks of the coupled system.
The normalization of the maximum force by the maximum acceleration
requires accctunting  for the ratio of the acceleration peaks at the two
coupled system resonance frequencies, because in some cases the higher
force peak corresponds to the lower acceleration peak. Calculation of the
maximum force for the residual and modal mass model also necessitates a
tuning analysis, conducted by considering different ratios of the load and
source uncoupled resonance frequencies in 3 ?40 increments. The results are
presented in parametric tables and curves for different ratios as and al of
modal to residual mass for the source and load, respectively.

Tables 1 lists the maximum normalized force as a function of the ratio of
load to source residual mass M2/M 1 for different ratios of source and load
modal to resildual mass, ml/M1 and m2/M2, for Q equal 50. The maximum
normalized forces are rounded to whole numbers and the tuning frequency
ratio squared in 16ths, which results in the maximum forces, is identified
by the digits to the right of the decimal in Table 1.

In Fig, 4, the maximum force for two of the residual and modal mass model
cases of Table 1, as and al both equal 1.0 and 0.1, are compared with
results from [Fig, 2 for the simple TDFS. It is anticipated that in future
JPL vibration tests, force limits like those in Table 1 for the residual and
modal mass model will replace those in Fig. 2 for the simple TDFS model.
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